

### Universidad de Granada

### Doble Grado en Ingeniería Informática y Matemáticas

## Variable Compleja I

Autor: Jesús Muñoz Velasco

# Índice general

| 1. | Tem  | ıa 1: Núm | eros           | s <b>C</b> | or | np | ole | jo | $\mathbf{s}$ |  |  |  |  |  |  |  |  |  |  | 5 |
|----|------|-----------|----------------|------------|----|----|-----|----|--------------|--|--|--|--|--|--|--|--|--|--|---|
|    | 1.1. | El cuerpo | $\mathbb{C}$ . |            |    |    |     |    |              |  |  |  |  |  |  |  |  |  |  | 5 |

# 1. Tema 1: Números Complejos

Existen ecuaciones lineales que no cuentan con solución real, como por ejemplo la conocida  $x^2 + 1 = 0$ . La idea es extender el conjunto de los números reales para resolver todas las ecuaciones polinómicas. Esto fundamenta el Teorema Fundamental del Álgebra (toda ecuación lineal de grado mayor que 0 tiene al menos una raíz).

#### 1.1. El cuerpo $\mathbb C$

Si definimos

$$\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}$$

podemos considerar las siguientes operaciones, para definir un cuerpo:

- •) Suma:  $(x, y) + (u, v) = (x + u, y + v) \ \forall x, y, u, v \in \mathbb{R}$ .
- •) Producto:  $(x,y)(u,v) = (xu yv, xv + yu) \ \forall x,y,u,v \in \mathbb{R}$

Con estas operaciones definidas tenemos que  $\mathbb{R}^2$  con la suma es ub grupo abeliano. El producto es asociativo, conmutativo y distributivo respecto a la suma. Además tenemos elementos neutros para la suma y el producto.

Con esto tenemos un cuerpo conmutativo  $\mathbb{C}$ . Como conjuntos tenemos que  $\mathbb{C} = \mathbb{R}^2$ .